If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+4m=15
We move all terms to the left:
m^2+4m-(15)=0
a = 1; b = 4; c = -15;
Δ = b2-4ac
Δ = 42-4·1·(-15)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{19}}{2*1}=\frac{-4-2\sqrt{19}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{19}}{2*1}=\frac{-4+2\sqrt{19}}{2} $
| -61+5y+5=2(5y-5)-6 | | –9p=45 | | 8+0.6x=17.24 | | 6(x+2)-3x=3(x-2)+5 | | 2x+1x^2-3=2x+3 | | c+11c+–c+–6c+–12c=7 | | 9(c-2)+8=5+c-15 | | 17=y/4-11 | | -56+6k=k-3k | | 5x-2=-12+5x | | -8x+6(x-3)=-24 | | x=√576 | | 0=5s+4s | | 3x-295=3496 | | -8=-2d-2d | | 70-7.42x=47.74 | | -15=4o+o | | -20=8(x+2)-2x | | 4y-4=-6+y | | 3=-2k-k | | -5=2d+3d | | 9(5w-2)=27 | | 6-3r=10 | | 3=6+x/9 | | 2=x/3-15 | | 1,269=27(p+20) | | .(1/4)(x−3)=5−x | | 4m+28=0 | | -2/3x+41/2=6 | | 8(-8w-52)=32 | | 67.9=7(m+2.9) | | 7=5d+2d |